Exemplar Problem Sequence and Series

12. Find the rth term of an A.P. sum of whose first n terms is $2n + 3n^2$. [Hint: $a_n = S_n - S_{n-1}$] Solution: Sum of first n terms be S_n given as $S_n = 2n + 3n^2$ We have to find the rth term that is a_r Using the given hint nth term is given as $a_n = S_n - S_{n-1}$ $\Rightarrow a_r = S_r - S_{r-1}$ Using $S_n = 2n + 3n^2$ $\Rightarrow a_r = 2r + 3r^2 - (2(r-1) + 3(r-1)^2)$ $\Rightarrow a_r = 2r + 3r^2 - (2r - 2 + 3(r^2 - 2r + 1)))$ $\Rightarrow a_r = 2r + 3r^2 - (2r - 2 + 3r^2 - 6r + 3) \Rightarrow a_r = 6r - 1$ Hence the rth term is 6r - 1Long Answer Type